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1 Introduction 

In this report, prepared at the request of the NOAA Fisheries Pacific Islands Regional Office 

(PIRO), the Hawaii permitted deep-set longline (DSLL) fishery estimated anticipated take levels of nine 

protected species and four unidentified classifications are provided.   

The nine species are 

(1) loggerhead sea turtle

(2) leatherback sea turtle

(3) olive ridley sea turtle

(4) green sea turtle

(5) giant manta ray

(6) oceanic whitetip shark

(7) Indo-west Pacific (IWP) scalloped hammerhead shark

(8) sperm whale, and

(9) main Hawaiian Islands false killer whale stock (MHIFKW).

The four unidentified classifications are 

(1) hardshell sea turtle

(2) unidentified ray

(3) manta/mobula (identified as a member of the Mobulidae family), and

(4) IWP unidentified hammerhead shark (an unidentified hammerhead shark caught within

the IWP region).

 Additionally, the anticipated dead or serious injury classification levels are provided for the two 

cetacean populations (sperm whale and MHIFKW).  The data, methods, and assumptions used to 

estimate the anticipated take level and anticipated dead or serious injury level are described within this 

report. 

First, let us consider the definition of “take” and what is meant by the terms “bycatch” and 

“take level” in this report.  The Marine Mammal Protection Act (MMPA) and the Endangered Species Act 

(ESA) define “take” in slightly different ways; basically “take” means to catch, kill or harm a marine 

mammal or protected species in any way.  An “incidental take” is a take that results from, but is not the 

purpose of, the carrying out of an otherwise lawful activity.  Herein, “bycatch” refers to the total 

number of incidental take events in which an animal is hooked or entangled in the longline gear.  Under 

this definition, bycatch is a component of the total incidental take in the DSLL fishery because an animal 
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may interact in other ways with the longline fishery besides hooking or entanglement.  The term “take 

level” in this report refers to the bycatch over a specified time period, such as the calendar year. 

There are a few practical constraints on the definition of bycatch used herein.  First, observers 

are instructed to record all observed hooked or entangled animals during haul back of the longline gear 

(Pacific Islands Regional Observer Program, 2017).  Animals observed hooked or entangled that are 

freed before being landed on deck are included in this definition.  However, hooked or entangled 

animals that are removed (e.g., by predators) or freed (e.g., by escape or drop-off) from the longline 

prior to the longline becoming visible on the haul back would not be observable and therefore could not 

be recorded unless warranted by convincing circumstantial evidence of their capture.  These “missed” 

animals are not included in the bycatch as there is no practical way to quantify them.  Nor does bycatch 

include animals that are not hooked or entangled but are in some other unobserved way caught, killed, 

or harmed by the activity of deep-set fishing.  Such events are not included because it is not feasible to 

monitor all aspects of a trip; thus, there is incomplete data available on such interactions. 

Second, bycatch refers to the total number of bycatch events, which may exceed the number of 

individual animals that are caught.  It is possible for an animal to be observed caught, then freed or 

released, and subsequently caught again during the same year.  For example, a loggerhead sea turtle 

was observed to be caught twice during a Hawaii shallow-set longline trip in 2012.  These two events are 

considered separate bycatch events. 

Next, let us consider how the term “anticipated take level” (ATL) is interpreted within this 

report.  Under the assumption that take level is a random variable, one can talk about the probability of 

each possible value of the take level (outcome).  Hereafter, denote this random variable as T.  The list of 

all possible outcomes and their corresponding probabilities is called a probability distribution.  Since T is 

a count, all outcomes will be nonnegative integers; hence, the probability distribution is a discrete 

distribution.  This discrete distribution can be thought of as the relative frequency (probability) of each 

possible outcome from a long-run of random T observations.  It is this discrete distribution that is 

interpreted as the ATL.  Hereafter, T and ATL will refer to the annual take level and its distribution, 

unless otherwise stated.  In other words, the ATL consists of the T outcomes that are anticipated from 

year-to-year.  Estimating this distribution is the primary focus of this report. 

To facilitate the calculation of ATLs, the ATL is interpreted as the anticipated probability 

distribution of T under the basic assumptions that (1) the underlying process that generates T does not 

change, and (2) the random values of T come up randomly, independently across years, and with a 

single fixed probability distribution.  Herein, let ATLT  denote T under these assumptions. 

The ATLs for the periods of 3 and 5 years are also derived and denoted as the 3-year ATL and 5-

year ATL, respectively.  That is, the distribution of ATLT  is derived for 3 periods of time: 1, 3, and 5 years.  

The 5-year ATL was only requested for marine mammals.  For each time period, the mean and 95th 

percentile of the derived ATL are reported, as requested. 

Next, let us consider takes that result in a classification of serious injury or mortality for marine 

mammals.  Following the guidelines outlined by NMFS (2012), an observed marine mammal incidental 

take is classified as a death or into a relevant injury category (i.e., serious or non-serious).  Herein, 

denote the classification of “death or serious injury” as DSI.  Similar to T, it is assumed that the number 

of DSI classifications is a random variable.  Define the DSI level as the number of DSI classifications over 
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a specified period and denote this random variable as DSIC .  Additionally, let ADSIL denote the 

anticipated probability distribution of DSIC .  The ADSIL assumes the basic assumptions of the ATL listed 

above and that the process that generates a DSI classification does not change.  Herein, let ,DSI ATLC

denote DSIC  under these assumptions.  Unless otherwise stated, DSIC and ADSIL refer to the annual DSI

level.  Similar to a take event, it is possible for the same animal to be involved in multiple DSI events. 

The estimated ATLs are derived using a Bayesian inferential approach based on simplistic 

models that make a few critical assumptions.  For some ATLs, these assumptions are unlikely to be true 

and steps are taken to try and mitigate the consequences of these violations.  The necessity and 

usefulness of these simplistic models are discussed throughout this report.  In the next section, the 

historical data sets are described.  In Section 3 and 4, the methods and their assumptions and caveats 

are discussed.  The results for each species classification of interest are provided in Section 5. 

2 Historical Data 

The Hawaii-permitted longline fishery is a limited-entry fishery with a maximum of 164 permits.  

In 2000, the Hawaii longline fishery was split into the two management components: deep-set (targeting 

primarily tunas, most commonly bigeye tuna) and shallow-set (targeting primarily swordfish).  Since this 

split, an observer must be aboard monitoring bycatch on at least 20% of a year's DSLL trips.  In this 

document, a Hawaii longline fishing trip is defined as any commercial fishing trip by a vessel that fishes 

using a Hawaii longline permit.  Before departing on a fishing trip, a vessel’s owner or operator are 

required to notify NOAA Fisheries Pacific Islands Regional Observer Program (PIROP) contractor at least 

72 hours prior to their intended departure date.  During this notification, they must declare if the trip 

will be a shallow-set trip.  The DSLL fishery consists of all other trips and must comply with the 

regulations for this fishery, including the requirement of observer placement on a sample of vessels. 

Although some of the DSLL regulations have changed since 2000, the only ones made with the 

intent to reduce bycatch of a protected species were those in the False Killer Whale Take Reduction Plan 

(FKWTRP) Final Ruling (see Code of Federal Regulations 50 CFR. § 229.37) that went into effect on 

December 31, 2012.  Although the intent of the FKWTRP was to reduce the T outcomes of the false killer 

whale (FKW), it introduced several regulations that could affect the T outcomes of other species. 

As shown in Table 2.1, the number of trips, fishing operations (sets), and hooks deployed have 

increased over the years, but from year-to-year this increase has not been steady.  Additionally, the 

increase in the number of hooks deployed is more dramatic than the increases in the other two 

measures.  Comparing 2002 to 2017, the number of trips increased by 25%, the number of sets 

increased by 37%, and the number of hooks deployed increased by 94%.  How fishing operations are 

distributed over the fishing grounds changes seasonally and from year-to-year.  Therefore, an increase 

in the number of trips, fishing operations, or hooks deployed does not necessarily increase a species’ 

bycatch. 

Sampling the DSLL fleet involves placing a NOAA Fisheries observer on a random sample of DSLL 

trips.  This person is instructed to observe the entire haul back of every fishing operation (set) and 

record all observed interactions with protected species and marine mammals, as well as a suite of 

variables concerning the trip, fishing operation, retained catch, and bycatch.  This information is entered 

into a database called the Longline Observer Data System (LODS) (Pacific Islands Regional Office, 2019).  
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The observer manual (Pacific Islands Regional Observer Program, 2017) provides information on the 

program and the variables recorded. 

As the estimator of the 2002–2017 annual take levels is based on the complex adaptive sample 

design used to select trips for observer placement, it is important to understand the design and the 

necessity for an adaptive design.  An adaptive design is used to adapt to the availability of observers.  

Because a selected trip can only be sampled if an observer is available for deployment, observer 

availability must be considered.  Observer availability and coverage levels vary throughout the year 

because of (1) fluctuation in the fleet’s activity level, (2) demands of 100% coverage in the SSLL fishery, 

(3) an influx of observers after completion of NMFS observer training, (4) the departure of observers

from the observer program, and (5) observers leaving and returning from leave.  Because observers are

not paid while waiting to be deployed, they must be assigned with minimal delay when available.  The

alternative of paying them while they are waiting to be deployed would increase the cost of the

observer program.  To adapt to the variability in observer availability and reach a balance between

obtaining a probability sample and being cost effective, an adaptive sampling protocol that is based on

two sampling schemes was developed.

Table 2.1.  The DSLL fleet’s annual effort as recorded by the vessels (Pacific Islands Fisheries Science 
Center, 2019) and the amount of DSLL effort observed by PIROP (Pacific Islands Regional Office, 2019).  
A trip is assigned to the calendar year its retained catch was landed.  Effort is expressed as the number 
of trips, number of fishing operations (sets), and the number of hooks deployed. 

Year 

DSLL Effort Observed Effort 

trips sets hooks trips sets hooks 

2002 1,180 14,248 27,441,631 284 3,536 6,806,822 

2003 1,216 14,733 29,657,401 259 3,207 6,450,221 

2004 1,332 15,888 31,890,476 324 3,928 7,841,804 

2005 1,398 16,506 33,549,695 364 4,602 9,360,671 

2006 1,341 16,372 34,414,412 281 3,605 7,542,491 

2007 1,381 17,781 38,735,969 270 3,508 7,627,296 

2008 1,333 17,875 40,063,212 288 3,917 8,785,395 

2009 1,225 17,001 38,177,005 250 3,520 7,879,685 

2010 1,179 16,077 37,244,654 256 3,567 8,152,319 

2011 1,246 16,888 40,022,132 253 3,540 8,260,092 

2012 1,305 18,152 44,163,002 263 3,659 8,768,728 

2013 1,328 18,750 46,769,514 272 3,830 9,278,133 

2014 1,302 17,873 45,963,197 274 3,831 9,608,237 

2015 1,385 18,409 47,331,741 283 3,725 9,393,436 

2016 1,419 19,315 50,873,134 283 3,880 9,872,439 

2017 1,478 19,578 53,258,093 297 3,832 10,148,196 

As mentioned previously, longline vessels are required to notify the PIROP contractor prior to 

their intended departure date.  To enable sample selection, the PIROP contractor numbers the 

notifications sequentially in the order in which they are received.  Herein, this assigned number is 

referred to as the notification number.  It is these notification numbers that are selected, and the trips 

associated with them designated to be sampled. 
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The first stage of the sampling protocol is a systematic sample.  The systematic sample requires 

having an observer available to be deployed whenever a selected trip is ready to depart.  Achieving this 

requirement under full targeted coverage, typically 20% coverage, throughout the year requires having 

enough observers on contract to accommodate higher levels of fleet activity and paying them when they 

are not deployed on a vessel.  These requirements cannot be met under the current level of funding; 

therefore, the sample selected under the systematic design is slightly smaller than the targeted 

coverage, typically 5% less.  Drawing the systematic sample at this level seems to provide the maximal 

percent coverage by the systematic sample in which few selected trips are missed.  Since 2011, a 15% 

systematic sample is drawn unless PIROP does not have enough observers.  In this situation, the 

coverage level of the systematic sample is adjusted.  For example, in 2014, it was necessary to reduce 

the systematic sample down to 10% at the beginning of the year, and when there were enough 

observers, a new systematic sample for the remainder of the year was drawn at 17% coverage.  Prior to 

2011, the first quarter (January–March) systematic sample was drawn at 10% coverage and the other 

quarters at 15% coverage. 

Now let us consider drawing the additional samples required to achieve the targeted coverage 

level.  Only after all upcoming notifications selected by the systematic sample are assigned an observer 

and there are still observers ready to be deployed should additional samples be drawn.  The method for 

drawing these samples needs to be straight forward, as they are needed quickly and with little 

forewarning.  Drawing the additional notifications using simple random sampling without replacement 

(SRSWOR) from the list of notifications still eligible for observer placement is straightforward and the 

method that the observer program is instructed to use.  Hereafter, this complex adaptive sample design 

is called a “systematic-plus” (SYSPLUS) design. 

Because the occasions when secondary samples are drawn are not randomly selected but 

determined by the need to deploy observers, the probability a notification is selected by the secondary 

sample is unknown and needs to be approximated.  To approximate these probabilities, the contractor's 

list of notifications is used.  Examination of these records reveal time periods when coverage appears to 

have been greater or less than the full targeted coverage.  Specifically, time periods for which the 

number of secondary samples is greater than expected are periods of higher coverage, and those for 

which the number of secondary samples are fewer than expected are periods of lower coverage.  Before 

computing the inclusion probabilities (the probability a sampling unit is included in the sample), periods 

of comparable coverage are identified.  The inclusion probabilities are computed by enumerating the 

number of notifications during consecutive time periods of comparable coverage and assuming that the 

secondary samples are selected with equal probability from those trips that have not been selected as 

part of the systematic sample.  An outcome of the secondary sample is that notifications are selected 

with unequal probability.  For example, notifications that are included in the sampling frame of the 

secondary sample will have a greater probability of being selected than those excluded. 

The SYSPLUS has been used to select DSLL trips since 2002.  For this reason, only 2002–2017 

observer data are used to derive anticipated takes, except for the IWP scalloped and unidentified 

hammerhead sharks.  For these species, 2004–2017 observer data are used, as requested by PIRO. 

The historical data are not collected over a random selection of years but consist of data 

collected over 16 consecutive years (2002–2017).  This short time series of estimated T outcomes is 

unlikely to provide sufficient information to determine a pattern of dependency across years or the 
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extent of an ATL’s right tail (higher take levels).  The ATLs are likely asymmetrical, with a long right tail 

(the distribution is bounded on the left by 0). 

3 Methods for estimating ATL 

In this section, the general approach taken to estimate the ATL is described, including the 

underlying assumptions behind the approaches.  The computation of the mean and 95th percentile of an 

ATL and the derivation of the 3-year and 5-year ATL are also explained.  Because estimates of the T 

outcomes for years 2002–2017 are used to derive some of the ATLs, the methods used to estimate 

these values for the DSLL fishery are first explained. 

3.1 Estimation of T outcomes for years 2002–2017 

To begin, assign a trip’s bycatch to the year its retained catch was landed, and let yrt  denote the 

unknown T outcome for years 2002, ,2017yr =   and ŷrt  denote the sample-based estimate of the

outcome for year yr.  For an unequal probability sample without replacement, the Horvitz-Thompson 

estimator (HTE) and generalized ratio estimator (GRE) are appropriate estimators of finite population 

totals, such as .yrt   Short descriptions of both estimators follow; see Thompson (1992) for more detail. 

Let i denote the sampling unit,  i  denote the inclusion probability of sampling unit i, Y denote 

the variable of interest where y represents a realized outcome of Y, and   denote the realized sample 

of unique sampling units.  The unbiased HTE of the population total   is  






=ˆ i
HTE

ii

y
. 

The variance of the HTE is small when the y-values are approximately proportional to the inclusion 

probabilities; when there is no such relationship, the variance can be very large (Thompson, 1992). 

When Y has an approximate proportional relationship with an auxiliary variable X, the GRE can 

be more efficient (smaller mean square error) than the HTE.  For the GRE to apply, the two quantities y 

and x (realized outcome of X) must be measured on each sample unit and the population total of the x-

values exactly known.  Let  x  and  y  denote the population totals of the x-values and y-values, 

respectively.  The GRE is 


 


=

ˆ
ˆ

ˆ
x

GRE x
y

where the components ̂ y  and ̂ x  are the Horvitz-Thompson estimates of  y  and  x .  Whereas the HTE 

is an unbiased estimator, the GRE is not.  If there is no linear relationship between the y-values and 

either the inclusion probabilities or any auxiliary variable, using the GRE with =1ix  for all sample units 

(i.e. notifications) is recommended (Hajek, 1971, p. 236; and Thompson, 1992, p. 69–70). 

When estimating ,yrt  the notifications are the sampling unit and iy  is the number of bycatch 

events linked to notification i.  Hereafter, let the random variable Y represent the random number of 

bycatch events for a notification (trip).  Because the inclusion probabilities are related to the number of 

observers actively employed and the level of activity in the fishery, a proportional relationship between 
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the y-values and inclusion probabilities is not expected.  Thus, the variance of the HTE can be very large 

when using observer data collected using the SYSPLUS design described in Section 2. 

Because Y is often perceived to be proportional to fishing effort, the GRE is of interest since 

effort can be incorporate into the estimator as the auxiliary variable X.  First consider expressing effort 

as the number of fishing operations or as the number of hooks deployed.  For the species whose ATLs 

are being estimated, the relationship between the y-values and these two metrics of effort have been 

explored, and an approximate proportional relationship has not been found. 

To incorporate effort as expressed by the number of trips that could potentially have positive y-

values in the year of interest, let =1ix  if the thi  notification is linked to a trip that landed its retained 

catch in the year of interest and = 0ix  if no hooks were deployed or the retained catch is landed in a 

different year.  Defining the auxiliary variable this way should have similar benefits to using the GRE with 

=1ix for each sampling unit (notification), but has the advantage of naturally correcting for selected 

notifications that did not link to a trip whose y-value could potentially be positive. Here, we use this 

definition of ix  as the effort metric with the GRE to estimate .yrt  

3.2 Bayesian data analysis to estimate ATL 

To estimate the distribution of hypothetical ATLT  outcomes, the ATL, it is natural to consider 

using Bayesian inference as it involves deriving the posterior probability distribution (or simply posterior 

distribution) of the variable of interest.  That is, the posterior probability distribution of ATLT  is an 

estimate of ATL. 

A Bayesian approach to inference starts with the formulation of a model that is presumed to 

adequately describe the situation of interest.  Specifically, the model provides a joint probability 

distribution of the variable of interest and the unknown parameters of the data distribution (probability 

distribution function assumed to generate the data).  This joint density can be written as a product of 

two distributions that are commonly referred to as the prior distribution and the data distribution.  The 

intent of the prior distribution is to capture our knowledge or beliefs about these parameters without 

reference to the data. 

Since ATLT  is a count, the distribution needs to be appropriate for counts.  The Poisson 

distribution is a standard distribution to consider when modeling count data.  A limiting characteristic of 

this distribution is that the variance equals the mean (equidispersion).  When the mean and variance 

differ significantly, the counts are referred to as being dispersed.  Overdispersion refers to the 

phenomenon of the variance exceeding the mean, and underdispersion refers to the phenomenon of 

the variance being less than the mean.  A frequent reason why dispersion arises in count data is the 

failure of some basic assumption of the Poisson model. 

One would expect the phenomena of dispersion to arise in the T outcomes.  Some of the 

reasons for this expectation are the lack of independent observations, a small sample size, and 

heterogeneity (the failure of the assumption of a single fixed probability distribution). 

In our situation, the syrt  are estimated using data collected under the SYSPLUS design, and only 

a subset of syrt might be considered relevant; that is, produced under similar conditions as the ATL 

assumes.  Because a finite population of DSLL trips is being sampled, inferences concerning these values 
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should be conditional on the observed data and the pattern of observed and unobserved trips resulting 

from the SYSPLUS sample (for more detail, see Chapter 7 of Gelman et al. 2004).  Depending on if a 

species’ number of observed takes between 2002 and 2017 (2004–2017 for IWP scalloped and 

unidentified hammerhead sharks) is 5 or less, one of two data distributions is specified as the data 

distribution.  Hereafter, bycatch events are referred to as being extremely rare if 5 or less events were 

observed over the historical time series and rare if greater than 5 events were observed.  First, the 

Bayesian data analysis for extremely rare bycatch events is outlined, then the data analysis for rare 

bycatch events is outlined. 

3.2.1 Poisson data distribution for extremely rare bycatch events 

For the species where an observed bycatch event has been extremely rare, a simple model that 

assumes the y-values (a trip’s bycatch) are independent, identically distributed (iid) Poisson( )trips  

random variables is likely to be a good approximating model for the data distribution.  Under this 

distributional assumption, the missing data pattern supplies no information on trip  (the bycatch rate) 

and can be ignored.  To build this model, for year yr, let ,obs yrt  denote the total observed takes and ,mis yrt

denote the total takes on unobserved (missed) trips where , ,yr obs yr mis yrt t t= + .  Under the modeling 

framework, these three values are considered outcomes of the random variables , ,obs yrT  , ,mis yrT  and ,yrT

respectively.  Now, assume the iid Poisson assumption over the years 2002, ,2017yr =   

( 2002, ,2017yr =  for IWP hammerheads), and let ,yrs yr
yr

t t=  , , ,obs yrs obs yr
yr

t t=  , , ,mis yrs mis yr
yr

t t=  and 

yrsp denote the coverage level of trips over these years (the number of observed trips divided by the 

total number of DSLL trips by the fleet).  Under properties of the Poisson distribution, ~ Poisson( )yrs yrsT 

where  =yrs yrs tripN and , ~ binomial( , ).obs yrs yrs yrsT T p   Although the outcomes yrst  and ,mis yrst are both 

unknown, they are potentially observable quantities and can be estimated using an appropriate sample-

based estimator (see Section 3.1) or predicted using a suitable approximating model.  To distinguish 

between a sample-based estimate and a model-based prediction of a T outcome, let t̂  denote a sample-

based estimate and t  denote a model-based prediction.  Assuming the iid Poisson model, the posterior 

predictive distribution of yrst  given ,obs yrst  is estimated as 

,

,

,

( | , ) ( )
( | , ) ,

( | , ) ( )
yrs

obs yrs yrs yrs yrs

yrs obs yrs yrs

obs yrs yrs yrs yrs
t

P t t p P t
P t t p

P t t p P t
=


where , ~ binomial( , )obs yrs yrs yrsT t p .  When deriving the posterior distribution of yrst in this report, the prior 

distribution of yrst  is specified as ( ) 1yrs yrs yrs yrsp t t t t=  + − , which is the objective integrated 

reference prior (a noninformative prior) for a binomial index (Berger et al., 2012).  The prior is truncated 

at the smallest value of yrst  such that , ,( | ) 0.0001.obs yrs obs yrs yrs yrsP t t t t =   

When estimating yrst , we are estimating the total takes over the specified historical period.  

Under the iid Poisson assumption, ~ Poisson( )yrs yrst   where  =yrs yrs tripN .  To estimate the ATL, let ATLT

denote the anticipated annual take levels which would occur in years with effort equal to the average 
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number of annual trips for years 2002–2017, denote this average as yrsN .  To estimate the ATL, we begin 

with estimating   where ~ Poisson( )ATLT .  The posterior distribution of yrs  is expressed as 

 


  
=



,

,

,

( | , ) ( )
( | , ) ,

( | , ) ( )

obs yrs yrs yrs yrs

yrs obs yrs yrs

obs yrs yrs yrs yrs yrs

P t p P
P t p

P t p P d

 where , |( , ) ~ binomial( , )obs yrs yrs yrs yrs yrsT p t p  and  ( ) 1/ ( )yrs yrsP  (the noninformative Jeffreys prior for 

the Poisson parameter).  The estimated   is then defined to be the posterior distribution of 

,|( , )yrs obs yrs yrst p  rescaled so that   is the posterior distribution when effort equals .yrsN

Random draws of ATLT  are simulated in three steps:  (1) Simulate draws of yrst from its posterior 

distribution.  (2) Simulate draws of   from its posterior distribution conditional on the draws of .yrst   (3) 

Simulate draws of ATLT   from a )Poisson( distribution conditional on the draws of .   The open source 

code in Evidence of Absence (Dalthorp, Huso, and Dail, 2017) is used to generate draws from the 

posterior distribution of ATLT . 

3.2.2 COM-Poisson data distribution for rare bycatch events 

For species where an observed bycatch event has been rare, the number of observed bycatch 

events are well above 5 (see tables in Section 5).  For these species, it is not assumed that y-values are 

iid random variables; consequently, the SYSPLUS design needs to be taken into account.  Additionally, 

because the FKWTRP went into effect on 31 December 2012, only the unknown values of the T 

outcomes for 2013, ,2017yr =   are assumed to be generated under the conditions assumed for the 

ATL. 

As the time available to conduct these analyses did not permit developing a probability model 

that accounted for the SYSPLUS design, for 2013, ,2017,yr =  the value of ŷrt  is used as if it is the true

value of .yrt   One of the consequences of assuming the estimated value is the true value of a finite 

population estimand is that the uncertainty around the estimated value is not incorporated into the 

posterior distribution. 

To estimate the ATL, ATLT  outcomes are assumed to be iid COM-Poisson (Conway-Maxwell-

Poisson or CMP) random variables (Conway and Maxwell, 1962).  The COM-Poisson distribution is a two-

parameter generalization of the Poisson distribution that allows for both overdispersed and 

underdispersed counts.  Using the parameterization introduced by Guikema and Coffelt (2008), the 

probability distribution function for a COM-Poisson random variable Y with parameters 1   and 1  

is 




 

 

 
= = =  

 

1
( | , ) 0,1,2,

! ( , )

y

P Y y y
y Z
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where 




 



=

 
=  

 
 0

( , )
!

j

j
Z

j
 is the normalizing constant.  As  ( , )Z  is intractable, an asymptotic 

approximation can be used (Minke et al., 2003 and Shmueli et al., 2005).  This distribution’s mean and 

variance can be approximated by  




 
 + − 

1 1
[ ] , [ ]

2 2
E Y V Y . 

These approximations help us see that the parameter   controls the amount of dispersion 

through its inverse relationship with variance.  When =1 , the probability distribution function reduces 

to the Poisson distribution, whereas 1  corresponds to overdispersion and 1  corresponds to 

underdispersion.  Unless  ,   or both are small,   closely approximates the mean. 

The method, algorithm, and code by Chanialidis et al. (2018) are used to fit the Bayesian COM-

Poisson model.  Thus, the parameters   and   are not estimated directly but derived from estimates of 

 and   where

   = = −( ) and ( ).exp exp

3.2.2.1 Priors for   and   

After specifying the COM-Poisson distribution as the data distribution, the next step is to specify 

priors for the unknown parameters   and  .  With only 5 estimated realizations of ATLT  ( ŷrt  for

2013, ,2017yr =  ), the posterior distribution will be sensitive to one’s choice of priors; however, 

specifying uninformative priors can be unhelpful. This is because noninformative priors can result in

excessively large T outcomes that are unlikely to be realized because of the pressure to protect ESA

listed species.  Regarding data that is available to create an informative prior, there is the 2002–2012 

data. Although this data was generated prior to the implementation of the FKWTRP, it captures a range 

of possible conditions that could affect the T outcomes.  For example, changes in the spatial and 

temporal distribution of effort, fishing behavior, and environment conditions could have a greater 

impact on T outcomes than any possible changes associated with the FKWTRP.  Although 2013–2017 

data is related to what is being used as our relevant historical data ( ŷrt for 2013, ,2017)yr =  , 

incorporating it into the priors helps to account for some of the uncertainty around ˆ .yrt   Hence, 2002–

2017 data is used to derive the priors for the unknown parameters   and .

To begin,   and   are both assigned a Gaussian prior.  The mean and variance of the Gaussian 

priors are derived using simulations based on the historical data.  Next, the basic steps of the 

simulations are discussed then specifics are given. 

The basic steps of the simulations are as follows: (1) Create a dataset of K hypothetical ATLT

outcomes, (2) Using this data set, compute the posterior distribution of   and   assuming the COM-

Poisson data distribution and specifying flat Gaussian priors (noninformative priors) for both 

parameters, (3) The mean and variance of each posterior distribution is recorded.  The value of K is large 

enough that the priors of   and   have little influence on the posterior distribution.  These 3 steps are 

replicated R times.  Let *
( )r , 2*

( )r , *
( )r , and 2*

( )r  denote the mean and variance of the posterior 
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distribution of   and  ,  respectively, for the thr  replicate .  The averages of these recorded values are 

used as their corresponding values for the Gaussian priors.  That is, the prior for   is    2Gaussian( , )  

where *
( )

1

/
R

r

r

R  
=

=  and 2 2*
( )

1

/ r

r

R

R  
=

= .  Similarly, the prior for   is    2Gaussian( , ) where 

*
( )

1

/
R

r

r

R  
=

=  and 
  

=

=2 2 *
( )

1

/
R

r
r

R . 

Now, let us consider how the hypothetical ATLT  data sets are generated.  The purpose of the 

hypothetical data sets is to generate different datasets of what the future might look like based on the 

historical data.  The following are the steps taken to generate the hypothetical ATLT  data sets. 

1. For 2002, ,2017yr =  , the posterior distribution of yrt  or the bootstrap distribution of 

ŷrt is obtained. If the year had fewer than 10 observed trips with positive y-values then

the posterior distribution of yrt  is derived.  The posterior distribution is obtained using 

the same binomial data distribution in the Bayesian model for iid Poisson( )trip  random 

variables described in Section 3.2.1, but with ,yrt  , ,obs yrt  and ,mis yrt  replacing yrst , , ,obs yrst

and , ,mis yrst  respectively.  Similarly, the coverage level of trips for year yr, ,yrp replaces

.yrsp   When more than 10 observed trips had positive y-values, the model that assumes 

the y-values are iid Poisson(trip ) variates is less likely to be a good approximating 

model.  Therefore, the bootstrap distribution of ŷrt  was generated using a bootstrap

algorithm that mimics the SYSPLUS sample.  The bootstrap distribution makes no 

distributional assumptions concerning the y-values.  The bootstrap algorithm does not 

work well when less than 10 trips have positive y-values.  Because the posterior 

distribution of yrt  or the bootstrap distribution of ŷrt  is derived depending on how

many trips had positive y-values, there is an inconsistency in the type of distribution 

being estimated.  Time did not permit a resolution to this discrepancy.

2. This step uses the posterior and bootstrap distributions derived in the first step to

create three probability distributions of hypothetical T outcomes.  The three

distributions are defined by the three historical time periods (1) 2002–2008, (2) 2009–

2012, and (3) 2013–2017.  The probability distributions assume similar conditions to

those influencing take levels in their respective historical time period.  Years 2009–2012

were prior to the FKWTRP final ruling but the annual quota of bigeye tuna was

consistently reached, closing part of the fishing grounds for the remainder of the year.

Years 2002–2008 took place prior to the FKWTRP final ruling and the fisheries annual

quota on bigeye tuna being consistently reached.  To derive each of these distributions,

for the relevant years (2002–2008, 2009–2012, and 2013–2017), 1,000 outcomes are

drawn from each year’s posterior or bootstrap distribution.  These draws are then

combined and their empirical probability distribution computed.  The resulting three

empirical probability distributions are used in the next step.
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3. This step draws K hypothetical T outcomes for each of the R replicates.  To begin, let 1 ,k  

2 ,k and 3k  represent the number of draws from each of the three empirical probability 

distributions, respectively, and let 1 2 3( , , ),k k k=K  the vector of these three variables.  It 

is assumed that K  has a multinomial distribution with sample size 
=

=
3

1
i

i

K k and

respective probabilities 1/6, 2/6, and 3/6.  For each of the R replications, a draw of K  is 

simulated.  Let * * * *
1 2 2( , , )r rr rk k k=K denote the thr draw for 1, , .r R=   After *

rK is drawn, 
*
1 ,rk  *

2 ,rk  and *
3rk  values are drawn from their respective empirical distributions.  These 

values are pooled to create the thr  data set of K hypothetical T outcomes.  This step 

assumes that the conditions that influenced the take levels in the more recent years are 

more likely to occur in the future. 

Although the priors computed by this approach helped to account for the uncertainty around 
ˆ ,yrt  a more rigorous approach would likely result in estimates of the ATL that are more accurate.  As 

mentioned previously, the data distribution should be for the data and the data collection method 

(SYSPLUS).  Additionally, priors based on the 2002–2012 data could be developed using a Bayesian 

model with a similar data distribution but with a noninformative prior.  As a complex adaptive design 

has been used to select trips for observer placement, for many species, developing a good 

approximating data distribution is challenging and may not be possible for all species. 

Even if a more rigorous approach was conducted, the current DSLL regulations have only been in 

place since 2013 and it is not realistic to presume that one can analyze so few years of data and obtain a 

suitable understanding of the patterns in T outcomes across years.  Although the effect of priors on 

Bayesian inference can be evaluated by trying several different priors, time did not permit trying 

different informative priors and an exhaustive sensitivity analysis. 

3.3 Model for Estimation of ATL of MHIFKW 

To estimate the ATL of MHIFKW, the first step is to estimate the ATL of FKW within Hawaii’s EEZ 

(EEZFKW) following methods outlined in Section 3.2.2.  After this step, the process used to estimate the 

T of MHIFKW in the most current annual stock assessment report (Carretta et al., 2018, pp. 96–108) is 

followed.  This process multiplies the estimated T outcome of EEZFKW by the proportion of DSLL sets 

within the EEZ that were within the overlap zone of the pelagic and MHI stock of FKW open to longline 

fishing.  The resulting number is considered to be the estimated T outcome of FKW within this overlap 

zone.  This number is then multiplied by the quotient of the current estimated density of MHIFKW in this 

zone divided by the current estimate of FKW density in this zone.  This quotient is interpreted as the 

proportion of FKWs in this zone that are anticipated to be MHIFKWs.  The current estimate of this 

quotient is 0.6040. 

The species classification referred to as a blackfish (BF) also needs to be considered when 

estimating the ATL of EEZFKW.  The BF classification results when an observed take is determined to be 

either a FKW or short-finned pilot whale.  Using the methods outlined in McCracken (2010), all BF 

bycaught within Hawaii’s EEZ are estimated to have a probability greater than 0.90 of being a FKW.  As 

there are no observed BF during the 2013–2017 period and only 9 during the 2002–2012 period, for 

simplicity, the BFs are considered FKWs when deriving the ATL of MHIFKW. 
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When estimating the ATL of MHIFKW, the number 0.0604 is fixed and the annual proportion of 

sets within the EEZ that are within the overlap zone is considered random.  Denote this random variable 

as Z.  Table 3.1 provides the annual DSLL fleet’s effort within Hawaii’s EEZ and the overlap zone along 

with the percentage of sets within the EEZ that are in the overlap zone.  Since the overlap zone is small 

compared to the area of the EEZ that is opened to DSLL fishing, this proportion is small and expected to 

stay small.  To derive the ATL of MHIFKW, the predictive posterior distribution of Z needs to be derived.  

The method used to derive the posterior distribution of Z is discussed next. 

Starting with the data distribution, Z is assumed to have a beta( , )a b  distribution.  Since the 

FKWTRP did not impose any regulations within the overlap zone, the 2002–2017 proportions are 

assumed to have been generated under the same conditions as those assumed for the ATL.  Next, let us 

consider the priors for a and b.  The beta distribution’s expected value is / ( )a a b+ .  The priors of the 

beta distribution can be thought of as the number of successes (a, sets within the overlap zone) and the 

number of failures (b, sets outside of the overlap zone) anticipated.  A large value of a b+ reflects 

greater confidence in our expectations of potential Z outcomes.  As we are fairly confident that Z will 

remain small, it seems reasonable to have priors that result in a large value for .a b+   Hence, a uniform 

distribution with a lower bound of 2 and an upper bound of 3 is specified as the prior for a, and a 

uniform distribution with lower and upper bounds of 450 and 550, respectively, is specified as the prior 

for b.  To estimate the posterior distribution of Z, first, 10,000 draws from the posterior distribution of a 

and b are simulated.  Then, conditional on a and b, 10,000 draws of Z from the beta distribution are 

simulated. 

At this juncture, draws from the ATL of MHIFKW are ready to be simulated.  For draws 

1, ,10,000,d =  the product of the thd  draw from Z, the thd  draw from the ATL of EEZFKW, and 0.0604 

represents the thd draw from the ATL of MHIFKW. 

Table 3. 1. The annual number of DSLL sets within Hawaii’s EEZ and the overlap zone of the pelagic 
and MHI stock of FKW that is open to DSLL fishing.  The percentage of DSLL sets within Hawaii’s EEZ is 
provided in the last column. 

Year Hawaii’s EEZ Overlap Zone 
Percent (%) in Overlap 

Zone 

2002 6,265 22 0.35 

2003 7,264 60 0.83 

2004 6,865 70 1.02 

2005 8,713 46 0.53 

2006 7,688 17 0.22 

2007 6,762 31 0.46 

2008 7,426 13 0.18 

2009 6,089 27 0.44 

2010 3,750 10 0.27 

2011 6,016 20 0.33 

2012 6,119 15 0.25 

2013 5,602 6 0.11 

2014 4,560 13 0.29 
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Year Hawaii’s EEZ Overlap Zone 
Percent (%) in Overlap 

Zone 

2015 6,053 22 0.36 

2016 5,353 20 0.37 

2017 5,159 60 1.16 

3.4 Inference: derivation of the mean and percentiles of the posterior ATL distribution 

Since the ATL is a discrete distribution, the mean (expected value) of ATLT  is the sum over all 

possible outcomes of the product of the value of the outcome and its posterior probability of occurring. 

The pth percentile of a posterior ATL is the smallest outcome satisfying the condition that the 

sum of probabilities (cumulative probability) over all possible outcomes up to the percentile is at least 

p/100.  For a discrete distribution with a small range of values, the cumulative probability may not equal 

p/100.  For example, consider the probability distribution in Table 3.2 where there are only 5 possible 

outcomes.  The 95th percentile of this distribution is 3 (because the next lower outcome has a probability 

less than 0.95), and the cumulative probability for this percentile is 0.99.  If one drew a large sample 

from this probability distribution, one would expect approximately 99% of the outcomes to be 3 or less. 

Table 3. 2. A hypothetical example of a probability distribution with 5 possible outcomes.  The 
probability of each outcome and its cumulative probability is given. 

Outcome Probability Cumulative Probability 

0 .60 .60 

1 .23 .83 

2 .10 .93 

3 .06 .99 

4 .01 1.00 

3.5 Estimation of the 3-year and 5-year ATL 

To derive the estimated 3-year and 5-year ATL, for each year, a large number of random 

outcomes are generated from the posterior annual ATL.  For each corresponding replicate, the 

outcomes are then summed over the years.  For example, to estimate the 3-year ATL, draws 

representing the first, second, and third year ATLT  outcomes are generated from the posterior annual 

ATL, and then these three ATLT  outcomes are summed to derive an outcome from the 3-year ATL.  This 

process is replicated 10,000 times, generating a data set of 10,000 random values from the 3-year ATL.  

The empirical probability distribution of the generated data set is used as an approximation of the 

posterior n-year ATL, for 3,5.n=   If these sums are interpreted to occur over consecutive years, the 

reported 95th percentile would be expected to underestimate these sums if annual take levels are non-

independent. 

4 Methods for estimating ADSIL 

For the marine mammal species, the ADSIL also needs to be estimated and this involves 

estimating the probability a bycatch event results in a DSI.  As only animals bycaught from 2007 to 
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present have had their injury classified under the current policy directive for classification (NMFS 2012), 

injury classifications prior to 2007 are not considered when estimating this probability.  Additionally, 

since the FKWTRP regulated the hooks used, for those species that tend to depredate catch or bait and 

get hooked, its implementation may have affected this probability.  As the FKW and BF tend to get 

hooked, only 2013–2017 injury classifications are used when estimating this probability for the FKW.  

The large whales (sperm, humpback, and Bryde's whale) are not known to depredate catch or bait, and 

their observed interactions have been entanglements.  Therefore, their 2007–2017 injury classifications 

are used, and because there are so few classifications of large whales bycaught in the DSLL and SSLL 

fisheries, these classifications are pooled when estimating this probability. 

This section provides a general explanation of the estimation of ADSIL.  After estimating ADSIL as 

the posterior distribution of ,DSI ATLC , the mean and percentiles of the estimated ADSIL are computed in 

the same manner as these statistics for the estimated ATL.  Similarly, the estimated 3-year and 5-year 

ADSILs are computed in the same manner as for the ATLs.  The estimation of ADSIL is first explained for 

the sperm whale and then for the FKW. 

4.1 Estimating the sperm whale’s ADSIL 

For the large whales, the three injury classifications of interest for estimating ADSIL are (1) death 

or serious injury (DSI), (2) non-serious injury (NSI), and (3) a prorated (PR) category where under the 

current policy (NMFS 2012) an injury is assumed to have a probability of 0.75 of being a DSI.  The 

Bayesian model for ADSIL assumes that bycatch events (past and future) have common probabilities 1 ,

2 , and 3 of being classified in these three categories, respectively.  Let 1 2, ,m m and 3m  represent the 

observed count in each category, respectively, and 1 2 3( , , )M m m m= the vector of these three counts.

The model used to estimate ADSIL begins with assuming that the data distribution of M  is the 

multinomial distribution with sample size 
3

1
i

i

m m+

=

= and respective probabilities 1 , 2 , and 3 , where 

3

1

1i
i


=

= .  The vector 1 2 3( , , )   = is then assigned the uniform prior distribution (assigns equal 

probability to any vector   satisfying
3

1

1i
i


=

= ).  The resulting posterior density of  is proportional to

31 2

1 2 3( ) mm mg    =

(Gelman et. al., 2004), which is known as the Dirichlet distribution with parameters

1 2 3( 1, 1, 1).m m m+ + +   To simulate draws from this Dirichlet distribution the R function rdirichlet in the 

package LearnBayes (Albert, 2009) is used. 

At this juncture, draws from the posterior distribution of M conditional on ATLT   and   are 

simulated from the multinomial distribution conditional on the simulated draws of ATLT  and .   This step 

assumes that ATLT  and   are independent.  The next step is to generate the number of PR classifications 

that are DSI.  For this step, it is assumed that this number is a binomial variate conditional on the 

number of PR classifications ( 3m ) and the probability 0.75 that a PR take is a DSI.  Adding a simulated 

draw from this binomial distribution to a simulated draw of 1m  represents a simulated draw from the 
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ADSIL.  To estimate the sperm whale’s ADSIL, 10,000 draws were simulated from each distribution 

involved in the process.  

4.2 Estimating the ADSIL of MHIFKW 

Now consider formulating the ADSIL of MHIFKW.  It is assumed that all FKW stocks have the 

same probability distribution of a take being classified as DSI.  For the FKW the third injury category (PR) 

does not apply, thus the injury classifications can be collapsed into the 2 categories (1) DSI and (2) NSI.  

ADSIL is formulated in a similar manner as for the sperm whale but without the third category.  The 

assumed data distribution of M  is the binomial distribution with sample size 
2

1
i

i

m m+

=

= and probability 

of a DSI  . 

As the BFs bycaught within the EEZ are considered FKWs when estimating the ATL of EEZFKW, 

the injury classifications of observed BFs and unidentified cetaceans, excluding the unidentified large 

whales, can be considered additional information and used to develop a prior density.  As recommended 

by the Pacific Scientific Review Group for marine mammals, the BF and unidentified cetacean injury 

classifications are both pooled when estimating   for these two species.  The prior density of   is the 

beta( 1, 1)s f+ + distribution, where s is the number of BF and unidentified cetacean classified as DSI and 

f is the number classified as NSI.  Based on this formulation of the prior, the posterior density of   is the 

1 2beta( 1, 1)s m f m+ + + + distribution. Under the assumption that MHIFKW’s ATLT and   are 

independent, draws from the ADSIL are simulated from the binomial distribution conditional on the 

simulated draws of MHIFKW’s ATLT  and .  

5 Results 

Unless specified, the Bayesian COM-Poisson model described in Section 3.2.2 is used to estimate 

the ATLs of interest.  This includes (1) using ˆ ,yrt  2013, ,2017,yr =   as the true -valuesyrt  and assuming 

these values are generated under similar conditions as ATLT  and (2) generating 100 datasets of 500 

hypothetical T outcomes for determining the parameter values of the Gaussian priors. 

5.1 Sea Turtles 

Table 5.1 presents the observed takes , )( obs yrt  and ˆ syrt  for the sea turtles.  Although these 

values appear to have increased in recent years (2013–2017), there are some high values prior to 2013. 
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Table 5. 1. The observed takes (obs) and ˆ syrt  (est) for the four sea turtle species and the classification 

of unidentified hardshell sea turtle.

Year 
Leatherback Loggerhead Olive Ridley Green 

Unidentified 
Hardshell 

obs est obs est obs est obs est obs est 

2002 2 6 4 19 7 31 1 3 0 0 

2003 1 4 0 0 3 15 0 0 0 0 

2004 3 14 0 0 13 45 1 4 0 0 

2005 1 3 0 0 2 17 0 0 0 0 

2006 2 9 0 0 11 55 2 6 0 0 

2007 2 4 1 6 7 26 0 0 0 0 

2008 1 11 0 0 3 17 0 0 0 0 

2009 1 3 0 0 4 17 0 0 0 0 

2010 1 6 1 6 3 10 0 1 0 0 

2011 3 14 0 0 7 36 1 5 0 0 

2012 1 6 0 0 6 34 0 0 0 0 

2013 3 15 2 11 9 42 1 5 0 0 

2014 7 38 0 0 8 50 3 16 0 0 

2015 4 18 2 9 13 69 1 4 0 0 

2016 3 15 2 7 31 160 1 5 1 5 

2017 0 0 3 12 26 118 3 18 0 0 

5.1.1 Leatherback sea turtle 

The leatherback sea turtle’s estimated ATLs reflect the higher 2013–2016 values of ŷrt  and the

uncertainty around these estimates.  Table 5.2 reports the requested statistics for the different 

requested ATLs: annual and 3-year. 

Table 5. 2. The mean and 95th percentile of the specified leatherback sea turtle’s posterior ATLs. 

Period of ATL Mean 95th Percentile 

annual 17.1 43 

3-year 51.4 95 

5.1.2 Loggerhead sea turtle 

In the recent years, the , sobs yrt  and ˆ syrt for the loggerhead sea turtle show a possible increase in 

T outcomes.  However, the year with the highest values for these variables is 2002.  The values from 

2002 are down-weighted when deriving the ATL.  This is likely justified as there were changes in the 

regulations to ensure that fishing operations were set deep after there was evidence not all fishing 

operations were being set deep in early 2002.  Table 5.3 reports the requested statistics. 
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Table 5. 3. The mean and 95th percentile of the specified loggerhead sea turtle’s posterior ATLs. 

Period of ATL Mean 95th Percentile 

annual 9.1 27 

3-year 27.3 57 

5.1.3 Olive ridley sea turtle 

The olive ridley sea turtle’s estimated ATLs reflect the higher 2013–2017 values of ˆ .yrt   Table 5.4 

gives the requested statistics.

Table 5. 4. The mean and 95th percentile of the specified olive ridley sea turtle’s posterior ATLs. 

Period of ATL Mean 95th Percentile 

annual 70.7 171 

3-year 212.1 373 

5.1.4 Green sea turtle 

The green sea turtle’s estimated ATLs reflect the higher 2013-2017 values of ˆ .yrt   Table 5.5 

shows the requested statistics. 

Table 5. 5. The mean and 95th percentile of the specified green sea turtle’s posterior ATLs. 

Period of ATL Mean 95th Percentile 

annual 13.0 39 

3-year 38.7 81 

5.1.5 Unidentified hardshell sea turtle 

Although there is only 1 observed take of an unidentified hardshell sea turtle, its estimated ATLs 

are derived using the Bayesian COM-Poisson model.  This decision is based on the observation that the 

2013–2017 ˆ syrt  for the hardshell turtles (loggerhead, olive ridley, and green) tend to be higher than 

previous years and that the 1 observed take of an unidentified hardshell turtle occurred in 2016.  Using 

the COM-Poisson model is consistent with what is used for the hardshell turtles.  Table 5.6 shows the 

requested statistics.  If the model for extremely rare events is used, the results would be similar to those 

for the sperm whale since there was only 1 observed take of a sperm whale (see Table 5.16). 
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Table 5. 6. The mean and 95th percentile of the specified unidentified hardshell sea turtle’s posterior 
ATLs. 

Period of ATL Mean 95th Percentile 

annual 2.8 9 

3-year 8.2 18 

5.2 Giant manta ray and other related classification 

This section concerns the giant manta ray and two other species classifications that may contain 

a giant manta ray: manta/mobula and unidentified ray.  Table 5.7 shows the observed takes ,( )obs yrt  and 

ˆ syrt for the rays of interest. 

Table 5. 7. The observed takes (obs) and ŷrt  (est) for the giant manta ray and the two other ray

classifications of concern. 

Year 

Giant Manta Ray Manta/Mobula Unidentified Ray 

obs est obs est obs Est 

2002 0 0 19 104 3 11 

2003 0 0 4 19 1 6 

2004 1 3 8 39 0 0 

2005 2 7 0 0 0 0 

2006 2 11 2 21 0 0 

2007 2 5 6 31 1 1 

2008 2 10 2 10 1 5 

2009 4 23 3 19 3 20 

2010 17 95 1 6 2 5 

2011 1 5 2 9 0 0 

2012 2 11 1 6 2 12 

2013 1 5 0 0 4 21 

2014 3 11 4 16 0 0 

2015 2 10 5 25 4 21 

2016 4 22 3 16 1 4 

2017 0 0 5 26 1 7 

5.2.1 Giant manta ray 

The highest ŷrt  of the giant manta ray is in 2010, where the ,obs yrt and ŷrt  are over four times

higher than any other year.  Expect for 2010, the , sobs yrt  range from 0 to 4.  Although 2010 is not 

included in the relevant historical years, it is incorporated into the prior and thus incorporated into the 

estimated ATLs.  Table 5.8 shows the requested statistics. 
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Table 5. 8. The mean and 95th percentile of the specified giant manta ray’s posterior ATLs. 

Period of ATL Mean 95th Percentile 

annual 20.0 60 

3-year 59.9 126 

5.2.2 Manta/Mobula ray 

The highest ŷrt  of the manta/mobula ray is in 2002, where ,obs yrt and ŷrt  are over two times

higher than the other years.  Expect for 2002, the , sobs yrt  range from 0 to 8.  Although 2002 is not 

included in the relevant historical years, it is incorporated into the prior and thus incorporated into the 

posterior ATLs.  Years 2002–2008 having less influence in determining the parameter values of the prior 

is reflected by the smaller mean and upper 95th percentile than would be expected if years 2002–2017 

had equal influence.  Table 5.9 shows the requested statistics. 

Table 5. 9. The mean and 95th percentile of the specified manta/mobula’s posterior ATLs. 

Period of ATL Mean 95th Percentile 

annual 19.0 53 

3-year 59.9 115 

5.2.3 Unidentified ray 

There is not a clear pattern of ,obs yrt and ŷrt  increasing or decreasing over the years.  Table 5.10

shows the requested statistics. 

Table 5. 10. The mean and 95th percentile of the specified unidentified ray’s posterior ATLs. 

Period of ATL Mean 95th Percentile 

annual 14.0 39 

3-year 41.6 83 

5.3 Sharks 

This section concerns two species of sharks, oceanic whitetip shark and IWP scalloped 

hammerhead shark, and the related IWP unidentified hammerhead shark.  Because these sharks could 

be kept after being caught (retained) until recently, the ATLT  and ATLs are based on the historical catch, 

which includes bycatch and retained catch.  Table 5.11 shows the observed catches ,( )obs yrt  and ˆ syrt  for 

the sharks of interest. 
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Table 5. 11. The observed catch (obs), includes bycatch and retained catch, and ˆ syrt  (est) for the 

sharks of concern.

Year 

Oceanic Whitetip IWP Scalloped 
Hammerhead 

IWP Unidentified 
Hammerhead 

obs est obs est obs Est 

2002 840 3,574 0 0 0 0 

2003 524 2,515 0 0 0 0 

2004 718 2,938 2 6 2 7 

2005 341 1,282 0 0 0 0 

2006 331 1,346 0 0 0 0 

2007 262 1,341 1 7 0 0 

2008 144 741 0 0 0 0 

2009 244 1,236 0 0 0 0 

2010 252 1,198 0 0 0 0 

2011 225 1,176 0 0 0 0 

2012 172 878 0 0 0 0 

2013 196 973 0 0 0 0 

2014 370 1,670 0 0 0 0 

2015 531 2,654 0 0 0 0 

2016 423 2,188 0 0 0 0 

2017 242 1,257 0 0 0 0 

5.3.1 Oceanic whitetip shark 

The oceanic whitetip shark is caught much more frequently than the other species considered in 

this report.  For this reason, there is greater precision around the ˆ s.yrt   When computing the parameter 

values of the Gaussian prior, generating data sets of 500 T outcomes conveyed too much confidence in 

the prior distribution, whereas, data sets of 20 T outcomes appeared to capture a more realistic level of 

uncertainty.  Hence, datasets of 20 T outcomes are generated.  Table 5.12 provides the requested 

statistics. 

Table 5. 12. The mean and 95th percentile of the specified oceanic whitetip shark’s posterior ATLs. 

Number of years Mean 95th Percentile 

annual 1,708.2 3,185 

3-year 5,103.1 7,632 

5.3.2 IWP scalloped hammerhead shark 

The IWP scalloped hammerhead shark estimated ATLs are derived using the Bayesian model for 

extremely rare events introduced in Section 3.2.1 and specifying 2004–2017 as the historical relevant 

years.  Table 5.13 gives the requested statistics.  Because the (0.95)( ) 0.95ATLP T t  ( (0.95)t  is the 95th

percentile of the ATL) for the ATLs, these probabilities are provided. 
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Table 5. 13. The mean and 95th percentile of the specified IWP scalloped hammerhead shark’s 
posterior ATLs.  In the percentile columns, the numbers in parentheses are the cumulative 

probabilities at the percentile; i.e., (0.95)( ).ATLP T t

Number of years Mean 95th Percentile 

annual 1.2 4 (0.978) 

3-year 3.7 9 (0.963) 

5.3.3 IWP unidentified hammerhead sharks 

The IWP unidentified hammerhead shark estimated ATLs are derived using the Bayesian model 

for extremely rare events introduced in Section 3.2.1 and specifying 2004–2017 as the historical relevant 

years.  Table 5.14 shows the requested statistics.  As one of the ATLs has (0.95)( ) 0.95ATLP T t  , these 

probabilities are provided. 

Table 5. 14. The mean and 95th percentile of the specified IWP unidentified hammerhead shark’s 
posterior ATLs.  In the percentile columns, the numbers in parentheses are the cumulative 

probabilities at the percentile; i.e., (0.95)( ).ATLP T t

Number of years Mean 95th percentile 

1 0.9 3 (0.970) 

3 2.6 7 (0.954) 

5.4 Marine mammals 

Table 5.15 presents the observed takes ,( )obs yrt  and ˆ syrt  for the marine mammals.  A BF caught 

within Hawaii’s EEZ is considered a FKW when estimating the ATL of MHIFKW.  For marine mammals, 

the requested estimated ADSIL are also provided. 

Table 5. 15. The observed catches (obs) for the sperm whale and the FKW and BF bycaught within 

Hawaii’s EEZ (HIEEZ).  The ˆ syrt  (est) are provided for the sperm whale.  The FKW and BF combined ˆ syrt

(est FKW+BF) are provided. 

Year Sperm Whale FKW and BF Within HIEEZ 

obs est obs(FKW) obs(BF) est FKW+BF 

2002 0 0 0 0 0 

2003 0 0 2 1 12 

2004 0 0 3 0 14 

2005 0 0 1 1 4 

2006 0 0 2 2 24 

2007 0 0 2 0 10 

2008 0 0 3 3 20 

2009 0 0 3 0 13 

2010 0 0 3 1 16 

2011 1 6 3 1 14 

2012 0 0 3 0 15 

2013 0 0 1 0 4 
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Year Sperm Whale FKW and BF Within HIEEZ 

obs est obs(FKW) obs(BF) est FKW+BF 

2014 0 0 2 0 9 

2015 0 0 0 0 0 

2016 0 0 1 0 5 

2017 0 0 2 0 11 

5.4.1 Sperm whale 

The sperm whale’s estimated ATLs are derived using the Bayesian model for extremely rare 

events introduced in Section 3.2.1.  Table 5.16 gives the requested statistics.  As (0.95)( ) 0.95ATLP T t  for 

the ATLs, these probabilities are provided. 

Table 5. 16. The mean and 95th percentile of the specified sperm whale’s posterior ATLs.  In the 
percentile columns, the numbers in parentheses are the cumulative probabilities at the percentile; 

that is, (0.95)( ).ATLP T t

Period of ATL Mean 95th Percentile 

annual 0.6 3 (0.984) 

3-year 1.9 6 (0.964) 

5-year 3.1 9 (0.957) 

The 2007–2017 injury classifications for large whales results in 1 DSI, 2 NSI, and 2 PR.  Table 5.17 

shows the requested statistics based on the estimated ADSIL. 

Table 5. 17. The mean and 95th percentile of the specified sperm whale’s posterior ADSILs.  In the 
percentile columns, the numbers in parentheses are the estimated cumulative probabilities at the 

percentile; that is, , ,(0.95)( ).DSI ATL DSIP C c

Period of ALDSI Mean 95th percentile 

annual 0.3 2 (0.987) 

3-year 1.0 4 (0.975) 

5-year 1.7 5 (0.952) 

5.4.2 MHI false killer whale 

The ATL of EEZFKW are derived using the Bayesian COM-Poisson model.  Simulated draws from 

this distribution are used in the process described in Section 3.3 to generate simulated draws from the 

ATL of MHIFKW.  Because the process in the most current annual stock review report is used to estimate 

the ATLT  outcomes of MHIFKW, ATLT  and ,DSI ATLC  outcomes are real numbers, as opposed to integers.  

Table 5.18 shows the requested statistics. 

23



Table 5.18.  The mean and 95th percentile of the MHIFKW’s posterior ATLs. 

Period of ATL Mean 95th Percentile 

annual 0.043 0.130 

3-year 0.125 0.282 

5-year 0.214 0.414 

The 2013–2017 injury classifications of BF and unidentified cetaceans (excluding large whales) 

result in 4 DSI and 1 NSI.  These classifications are used to determine the parameter values of the prior 

distributions as described in Section 4.2.  The 2013–2017 injury classifications of FKW result in 26 DSI 

and 7 NSI.  Using these classifications, simulated draws from the ADSIL of MHIFKW are obtained 

following the process outlined in Section 4.2.  Table 5.19 shows the requested statistics. 

Table 5.19.  The mean and 95th percentile of the specified MHIFKW posterior ADSILs. 

Period of ALDSI Mean 95th Percentile 

annual 0.033 0.102 

3-year 0.099 0.222 

5-year 0.166 0.329 

6 Discussion 

Bayesian modeling is convenient and useful when estimating the ATL; however, the knowledge 

and information on the process generating T outcomes in the DSLL fishery is insufficient to accurately 

model what is likely a complex process, and all methods of statistical inference will have shortcomings. 

For the marine mammals, estimating the ADSIL required assuming that bycatch events (past and future) 

have common probabilities of being classified in the relevant injury categories.  With so few bycatch 

events annually, it is not feasible to make a reliable evaluation of this assumption.  Nevertheless, 

estimates of ATLs and ADSILs are required. 

When contemplating the appropriateness of the methods used to estimate the ATLs and ADSILs 

in this report, one needs to consider (1) the complexity of the problem, (2) the limitations of the 

historical data and our knowledge, (3) the limited time to develop methods and derive the ATLs and 

ADSILs, and (4) if the reported Bayesian inferences seem reasonable, appropriate, and useful for their 

intended purpose.
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